Properties of acyl modified poly(glycerol‐adipate) comb‐like polymers and their self‐assembly into nanoparticles
نویسندگان
چکیده
There is an increasing need to develop bio-compatible polymers with an increased range of different physicochemical properties. Poly(glycerol-adipate) (PGA) is a biocompatible, biodegradable amphiphilic polyester routinely produced from divinyl adipate and unprotected glycerol by an enzymatic route, bearing a hydroxyl group that can be further functionalized. Polymers with an average Mn of ∼13 kDa can be synthesized without any post-polymerization deprotection reactions. Acylated polymers with fatty acid chain length of C4, C8, and C18 (PGAB, PGAO, and PGAS, respectively) at different degrees of substitution were prepared. These modifications yield comb-like polymers that modulate the amphiphilic characteristics of PGA. This novel class of biocompatible polymers has been characterized through various techniques such as FT-IR, 1H NMR, surface, thermal analysis, and their ability to self-assemble into colloidal structures was evaluated by using DLS. The highly tunable properties of PGA reported herein demonstrate a biodegradable polymer platform, ideal for engineering solid dispersions, nanoemulsions, or nanoparticles for healthcare applications. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3267-3278.
منابع مشابه
Novel Poly (glycerol-adipate) Polymers Used for Nanoparticle Making: A Study of Surface Free Energy
Nanoparticles made of biodegradable polymers has become the best approach for nanoparticle making due to their compatibility with the human body. New glycerol adipate polymers with hydroxyl group substituted with different percent of acyl group, sited as figures within the abbreviated name in the text, and triptophan were synthesized and proposed to be used in the preparction of dexamethason ph...
متن کاملNovel Poly (glycerol-adipate) Polymers Used for Nanoparticle Making: A Study of Surface Free Energy
Nanoparticles made of biodegradable polymers has become the best approach for nanoparticle making due to their compatibility with the human body. New glycerol adipate polymers with hydroxyl group substituted with different percent of acyl group, sited as figures within the abbreviated name in the text, and triptophan were synthesized and proposed to be used in the preparction of dexamethason ph...
متن کاملSynthesis of biocompatible poly(ɛ-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles
Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were empl...
متن کاملEncapsulation and release of -chymotrypsin from poly(glycerol adipate-co-- pentadecalactone) microparticles
Polymer based microparticles are increasingly becoming of interest for a variety of applications including drug delivery. Recently poly(glycerol adipate) (PGA) and poly(glycol adipate-co--pentadecalactone) have shown promise for delivery of dexamethasone phosphate and ibuprofen. In this paper the copolyester poly(glycol adipate-co--pentadecalactone) was evaluated as a colloidal delivery syste...
متن کاملChitosan/nanosilver Nanofiber Composites with Enhanced Morphology and Microbiological Properties
In recent years natural polymers have been widely used in biomedical applications. Application of natural and biocompatible polymers in wound dressing, medical sutures and tissue engineering are extensively growing. Additional properties are provided when metal nanoparticles such as silver and gold are incorporated in to the fibers. However, nowadays nanofibers due to their inherent properties ...
متن کامل